
On Wheeler-Feynman absorber theory of radiation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1970 J. Phys. A: Gen. Phys. 3 473

(http://iopscience.iop.org/0022-3689/3/5/003)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/3/5
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Gen. Phys., 1970, Vol. 3. Printed in Great Britain 

On Wheeler-Feynman absorber theory of radiation 

R. V. KAMAT? 
Tata Institute of Fundamental Research, Colaba, Bombay 5 ,  India 
MS.  receiced 28th Ju1.v 1969, in reaised form 8th January 1970 

Abstract. An attempt is made to re-derive the radiation damping formula 
using Wheeler-Feynman formalism of the absorber theory of radiation. 
The  point of departure is that the absorber response on the radiating charged 
particle is calculated by taking into account the principle of action and re- 
action. 

1. Introduction 
It is well-known that Maxwell’s equations are symmetrical in time and they admit 

both retarded as well as advanced solutions. An accelerated charge a radiates electro- 
magnetic energy and it suffers radiation damping. This radiated energy would reach 
another charge b some distance away at a later instant. This corresponds to the 
retarded solution Fret@) of Maxwell’s equations. The time-reversed situation, in 
which the energy converges on the charge from infinity at precisely that instant at 
which it accelerates, is never observed. This corresponds to the advanced solution 

of Maxwell’s equations. Of these, only the retarded solution is admitted, 
while the equally consistent advanced solution is rejected on the grounds of causality. 
However, Dirac (1938) proposed that, to obtain the empirically well-established 
formula for the radiation damping of an electron, it is necessary to employ both the 
retarded and the advanced fields. In  his theory, the electron a is considered as a 
point charge and the expression &(Fret@)-- Fad”@)) is shown to be finite at every point 
including the location of the electron itself. This then correctly reproduces the radia- 
tion damping formula. 

The  presence of the advanced fields was also admitted by Wheeler and Feynman 
(1949-to be referred to as W F  11) who developed a classical electrodynamics of 
direct interparticle action. They based their theory of action-at-a-distance electro- 
dynamics on a single action principle due to Schwarzschild (1903), Tetrode (1922) and 
Fokker (1929). Their main results may be summarized as follows. 

(i) An accelerated charge in an otherwise charge-free space does not radiate 
electromagnetic energy. Two charges interact through electromagnetic radiation only 
when they lie on each other’s light cone. This is the principle of action and reaction. 

(ii) The  fields which act on a given charged particle arise only due to other 
charged particles. This eliminates the uncomfortable concept of self-action. 

(iii) The  field produced by a charged particle a is given by 

F a )  = $(Fret(=) + Faav(a)). (1) 
Wheeler and Feynman (1945-to be referred to as W F  111), using the action-at-a- 

distance formalism, developed the suggestion by Tetrode, who proposed to abandon 
the concept of electromagnetic radiation as an elementary process and to interpret it as 
a consequence of an interaction between the source and all other charged particles in 
the universe, collectively called the absorber. Assuming that the universe contains 
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enough charged particles to absorb completely the radiation emitted by the source, 
they derived the expression for the radiation damping for various situations. Further- 
more, they demonstrated that both retarded and advanced solutions give equally 
consistent results and the explanation of the irreversibility of the radiation process 
observed in nature falls outside the domain of electrodynamics. 

2. Modifications of Wheeler-Feynman arguments 
Wheeler and Feynman (in W F  111) consider a charged particle a, called the source, 

situated in a completely absorbing universe. This accelerates to send a fully retarded 
field outwards into the absorbing medium. The field that reaches an absorber particle 
b at a later instant is the net retarded field, which is the superposition of the proper 
field of the source a and the response of the absorber particles other than b. The 
returned field of the absorber particle b at the location of a is assumed to be ‘elemen- 
tary’ travelling through the medium with the velocity of light in vacuum. The  radia- 
tion of a fully retarded field by the source is justified on the grounds that the returned 
reaction of all the absorber particles evaluated at the source itself, when added to 
F(@ of the source, gives Fret@), which is in accord with experience. However, accord- 
ing to the standard procedure of the electromagnetic theory, the law of propagation 
of such a retarded disturbance through a dispersive medium must take into account 
the properties of the medium through its refractive index. 

We wish to modify somewhat the arguments of Wheeler and Feynman in the 
following manner. 

(i) Let the source particle a receive the acceleration at time t. 
(ii) It radiates a fully retarded electromagnetic disturbance, which travels out- 

(iii) The net retarded field disturbs the absorber particle b. 
(iv) The absorber particle interacts back on the source through afully advanced 

field, which is also a net field, hence not elementary. 
(v) Summing over all the absorber particles b # a, the radiation reaction field is 

calculated. 
The  main point of departure from the original Wheeler-Feynman procedure is 

contained in step (iv) above, the justification for which is given as follows. 
(a)  The given absorber particle b receives the net retarded field which is the super- 

position of the proper field of the source a and those of the absorber particles other 
than b. By the principle of action and reaction, the response field of b should interact 
back with the particles other than b and the net field should reach the source a. 
This means that we should include the refractive index for the returned response field 
as well. 

( b )  It is shown in W F  I1 that Fa)  represents the field produced by a single particle. 
When a large number of particles are involved in the interaction, the field that will 
be experienced by any single charged particle, situated in the absorber, would be a 
superposition of the elementary fields of the form F(a). 

(c) Since the absorber particle b itself would experience radiation damping when 
it radiates, it should respond by radiating a fully advanced field. This is the time- 
reversed version of the reason for which Wheeler and Feynman consider the source 
particle to radiate a fully-retarded field as in argument (ii) ab0ve.T 

t We feel that this asymmetry is to be expected, as the problem itself is inherently asym- 
metric with respect to the source on the one hand and the absorber particles on the other. 

wards. 
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(d )  As the absorber particles may be free electrons as well as charged ions, they 
are assumed to have substantial inertia. Hence they are disturbed only after the 
‘principal part’ of the disturbance from the source, namely the ‘signal’ in the sense of 
Brillouin (1960), arrives at the location of the particle. We assume, following Bril- 
louin, that the ‘signal’ velocity (<  c) is the same as the group velocity of the pulse, 
provided the frequencies emitted do not lie in the region of anomalous dispersion. 
Hence, if the source a ,  situated at the origin, accelerates at time t ,  the absorber 
particle b at a distance r ,  from it, is disturbed at time t+r,/U, where U is the group 
velocity of the pulse. On the other hand, if one treats the returned reaction as an 
elementary interaction travelling with the velocity of light c in vacuum, then the 
instant at which the returned reaction reaches the source is ( t + ~ , / U - r , / c )  > t ,  
that is, it would reach the location of the source too late to account for the radiation 
damping, which occurs simultaneously with the acceleration of the source. 

3. Derivation of the radiation damping formula 
In  this derivation, we assume that the absorber is composed of free charged 

particles which are either at rest or are moving slowly with respect to the source a. 
These charged particles are supposed to be well separated from each other, so that 
the medium may be considered to be of low density. The  absorption of the radiation 
emitted by the source is assumed to be complete. 

The  source particle a is considered to have a charge + e. Let this source particle 
be accelerated at time t. Let us assume, following Wheeler and Feynman, that a fully 
retarded pulse is sent out from the source. The net field reaches the absorber particle 
b at a distance Y, from the source, at time t + y k /  U,  where L‘ is the group velocity of 
the pulse through the dispersive medium of the absorber. The  absorber particle 
experiences an acceleration A k given by 

A, = (e,,”,) x electric field due to the disturbance (2) 
where e ,  and m ,  are the charge and the mass respectively, of the given absorber 
particle. 

The  electric field due to the disturbance has the magnitude - ( eA / rkc2 )  sin 8, 
where 8 is the angle between the acceleration A of the source and rk. Here, the electro- 
static term, which vanishes as 1/rk2, has been ignored. 

The  acceleration of the absorber particle is 

e,  e A  
A, = - --2 sin 8. 

mk ‘kc  
(3) 

The force of radiation reaction on the source through the advanced returned 
field of the absorber particle, in the direction of the acceleration of the source, has 
the magnitude 

where 4 is the angle between the returned field and A.  This reduces the expression (4) 
to 

e 2 A  ek2 
sin2 8. __- 

c4 m,Y,2 
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T o  calculate the phase of the returned reaction, we represent the acceleration of 
the source as a Fourier integral 

A = 1 A,  exp( - iwt) dw. (5) 

Now, if we subdivide the frequency interval into narrow regions of width ZE,, 
so that there is neither an overlap of these regions, nor are they disjoint, we get 

,I+ € 2  

A = X /  A ,  exp( - iwt) dw. (6) 
wi WI-EC 

The acceleration of a typical absorber particle b at a distance Yk from the source, 
due to the interaction of the source on it, is 

% + E 2  

w ,  W l - E l  

A k = c /  A,, eXp(- i(wt- K Y ~ ) }  do.  (7) 

I n  each narrow region of w ,  w - - E ,  6 w < w Z + c 1 ,  we expand K = K(  w )  = w / V ,  
where V is the phase velocity of the disturbance for the frequency w, in Taylor's 
series about w l ,  in the form 

0 a ( w / V )  

Vl 1 
.(U) = -+I7) ( U - U ! ) + . .  . 

where we have written K(  w l )  = w l / V 1 .  Ignoring second- and higher-order terms in 
( w -  w l ) ,  we get 

We obtain, by collecting terms, 

K ( w )  w+9(E)  
U, V12 dw 

where U 1  = (l/V,)-(w1/V12)(dV/dw)1 is the group velocity for the group whose 
frequencies lie in the neighbourhood of w l .  The equation (7) then becomes 

The  advanced returned reaction from the absorber particle will produce an 
acceleration A,  in the source, given by 
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If now the width of each frequency band is made sufficiently narrow, then for 
each frequency w the phase difference between the returned reaction and the accelera- 
tion of the source can be written as 

w2 d V  
V2 dw rk* _- 

For a medium of low density the refractive index corresponding to the electro- 
magnetic disturbance of this frequency is given by 

where N is the particle density of the absorber. Using V = c/n and equation (12), 
we obtain 

4nNek2 
y k =  -___ 

Hence, the force of radiation reaction on the source due to a typical absorber 

yk*  (13) 
w 2  d V  _- 
v2 dw mkcw 

particle at the distance rk, for the frequency w ,  is 

-- e2A ek2 sin2 0 exp ( - i 4 i T f r k )  

c4 mkrk2 

Choosing the direction of A as the polar axis, we integrate the above expression for all 
the absorber particles, to give the total radiation reaction force on the source as 

2e2 2e2 dA 2e2 
- A w  1 exp( - i U )  d U  = - Au(  - i) = - -. 
3c3 0 3c3 3c3 dt 

CO 

This is the well-known radiation damping formula, which holds for the case of a 
slowly moving charged particle. It can be seen that this formula holds whatever may 
be the dependence of the acceleration upon time, so long as the velocities involved are 
non-relativistic. 

4. Radiation reaction formula for the charged particle in a dense dispersive 
medium 
We follow the same general scheme as in the first derivation. The  source a is 

situated in an absorbing medium in which the particles of the absorber are no longer 
free nor are they far from each other. For such a medium, we may write the refractive 
index (E - ik) in the form 

where p ( w )  = - w 2 / ( w o 2 -  w2 -2i13w). The equation of motion for a charged 
particle, situated in a dispersive medium carrying an electromagnetic disturbance 
of frequency w, is 

em2 
mkYk = - E 

wo2 - w2 - 2iPw 
or 
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Hence, the effective electric field acting on a charged particle situated in such a 
medium is p (  w)E. 

We assume that a charged particle, called the source, is situated in such a medium 
and is accelerated at time t. We shall now evaluate the contribution of the absorber 
particles to the electric field in the vicinity of the source, at a distance Y from it. The  
advanced field produced by the absorber at this point is obtained by integrating (over 
all the absorber particles) the product of the following factors. 

(i) A = A ,  exp( - iwt) is the Fourier component of the acceleration of the source, 
which, for simplicity, is assumed to be periodic. 

(ii) - ( e / ~ , c ~ )  sin 0, where 6' is the angle between A and rk,  when multiplied by 
the acceleration of the source, gives the strength of the full retarded electric field in 
vacuum at a distance y k  from the source. 

(iii) exp(i( cu2/v2)(dV/d w ) ~ , }  gives the phase difference of the advanced field 
reacting on the source, relative to that of the source acceleration. 

(iv) exp (iwr(n-iik) cos +/c}, where + is the angle between r and rk ,  is the cor- 
rection to be applied to the phase of the absorber field at the source itself, in order to 
evaluate this field at the distance Y from the source. 

(v) (e,/m,)p(w) relates the acceleration of the absorber particle to the electric 
field experienced by it. 

(vi) p (  w ) ,  this factor relates the returned effective advanced field to the electric 
field produced by the acceleration of the absorber particle. 

(vii) - (e, /Y7<c2) sin 6' times the acceleration of the absorber particle gives the 
magnitude of the component of the advanced field produced by the absorber particle, 
in the neighbourhood of the source and parallel to its acceleration. 

(viii) Nrk2 dr, dR,  this represents the number of absorber particles in the element 
of solid angle d R  and in the interval of distance dr, at a distance yk. 

Thus, the total advanced field of the absorber in the direction of the acceleration 
of the source, at a small distance Y from it, is given by 

e i w ( n  - ik) cos + dR 
-Ao exp( - icut) 1 sin2eG 
c3 

w2 d V  
( *  V2dw 

{p (  w ) } ~  exp I - - Y, 

The first integral has been evaluated in W F  I11 and its value is 

where x is the angle between A and r and 

for small U 

for all U 
2i U 

- U2/15 for small U 

for large U. 

F,( U )  = (exp( i U )  - exp( - i U ) }  

F,( U )  = (exp( i U )  - exp( - i U)}  

I '  
I 2i U 
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We now evaluate the second integral. Using V = c / ( n - i k )  and equation (15), 
a brief calculation yields 

w2 d V  

provided the damping factor /3 is assumed small for the medium considered. The  
second integral over y k  can now be easily evaluated to give - i(n - ik) w. 

Combining these results, we obtain that the advanced field of the absorber, near 
the source at a distance r from it, has an electric field component parallel to the 
acceleration of the source, given in magnitude and phase by the expression 

This, at a distance of several wavelengths from the source, becomes 

iw(n - ik )y  
+-exp - i d -  ___- )] sin2X. (20) - -exp -iwt+-- 

This is the Dirac radiation field Fad"(@)) ,  which accounts for the radiation 
reaction of the point charge. 

To evaluate the field at the location of the source itself, we imagine a small 
spherical region with the source at its centre, that contains no particle of the absorber. 
In  this regionn = 1, K = 0;  also F,(U) -+ landF,(U) - t o ( -  U2/15) .  The 
expression (18) then gives (2e/3c3) dA/dt, which, when multiplied by the charge of the 
source, gives, again, the radiation damping formula. 

1 .  C [ 2rc2 i c I 272 
4 iw(n - ik)v) e A ,  

5. Special cases 

lossless dispersive medium, we can put ,B = 0 and this gives 
(i) A special case of the above should be noted. If the source is situated in a 

where 

We note that 

( a )  w2 < wo2, p ( w )  < 0, n > 1 

One obtains for both these cases, 

and (b )  w2 > wo2, p ( w )  > 0,  n < 1. 

(21) 
C 

- 

The derivations of (20) and (21)  are valid only for the frequency regions ( U )  

w2 < wo2 and (b)  w2 > wo2, but break down when w approaches the resonance 
frequency w o  from either side, as in this region the group velocity is no longer the 
'signal' velocity. 

(ii) We could also reproduce the derivation of (14) as a special case of the pro- 
cedure outlined in § 4, by setting$( w )  = 1 and using the refractive index given by (1 1). 
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Yet, we have given the derivation of (14) in detail to demonstrate the simplicity of 
the method and to illustrate the calculation of phase of the returned reaction. 

6. Conclusions 
We have shown that it is possible to derive the radiation damping formula for a 

point charge in the framework of the Wheeler-Feynman formalism of the absorber 
theory of radiation by modifying their cycle of arguments which assumes that the 
absorber response field is elementary. We feel in making this assumption that they 
have apparently not taken into account the principle of action and reaction which is 
one of the most important results of their action-at-a-distance electrodynamics. 
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